Embedded System Design and Advanced Digital Systems Design

SONEIL TECH
Contact no.9501476514

Param Soneil Tech Solution

EMBEDDED SYSTEM

- Embedded System Design
 - Microcontrollers
 - Software Development for Microcontrollers
- Advanced Digital System Design
 - Finite State Machine (FSM)
 - Hardware Description Languages

What is an Embedded System?

- Computing systems embedded within electronic devices
- Hard to define
 - Nearly any computing system other than a desktop computer
 - "A computer that is a component in a larger system, and is not visible as a computer to a user of that system."
 - "A programmable component of subsystem providing some intelligence functions to the system of which it is a part."

What is an Embedded System?

- A microcontroller based system.
- Built into a device to control a function or a range of functions.
- Not designed to be programmed by the end-user (like a PC).
- Executes an in-built single program repeatedly.
- Tight coupling between hardware and software.
- Designed to work in highly constrained environments.
- Low cost, low power, small, fast, etc.
- Reactive and real-time
- Continually reacts to changes in the system's environment
- Must compute certain results in real-time without delay

Embedded Systems

- Key points:
 - Embedded systems have rigidly defined operational bounds
 - Not general purpose computers (PC, Unix workstation)
- Billions of units produced yearly vs millions of desktop units
- Perhaps 50 per household and per automobile

Embedded Systems

- Automotive systems
- Airplanes
- Toys
- Medical Devices

Example Embedded Systems

Anti-lock brakes

Auto-focus cameras

Automatic teller machines

Automatic toll systems

Automatic transmission

Avionic systems

Battery chargers

Camcorders.

Cell phones

Cell-phone base stations

Cordless phones

Cruise control

Curbside check-in systems

Digital cameras

Disk drives

Electronic card readers

Electronic instruments

Electronic toys/games

Factory control

Fax machines

Fingerprint identifiers

Home security systems

Life-support systems

Medical testing systems

Modems

MPEG decoders

Network cards

Network switches/routers

On-board navigation

Pagers.

Photocopiers

Point-of-sale systems

Portable video games

Printers

Satellite phones

Scanners

Smart ovens/dishwashers

Speech recognizers

Stereo systems

Teleconferencing systems

Televisions

Temperature controllers

Theft tracking systems

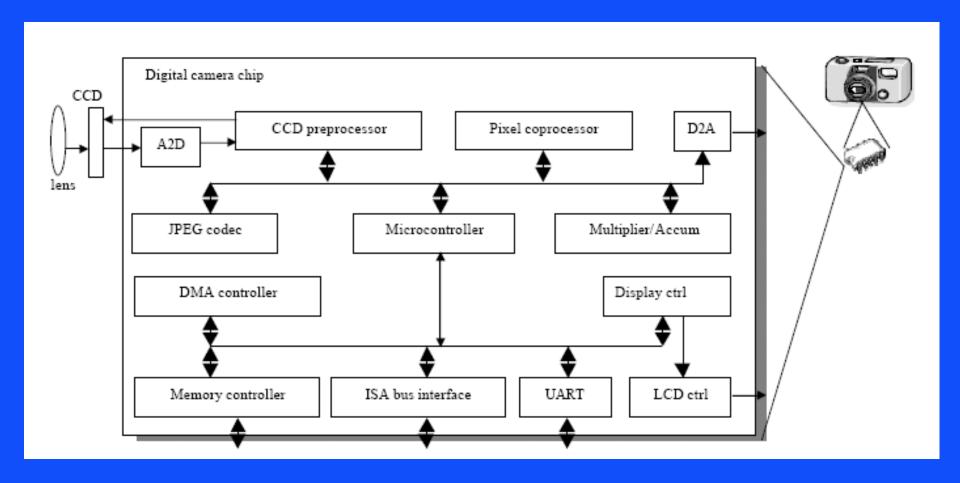
TV set-top boxes

VCR's, DVD players

Video game consoles

Video phones

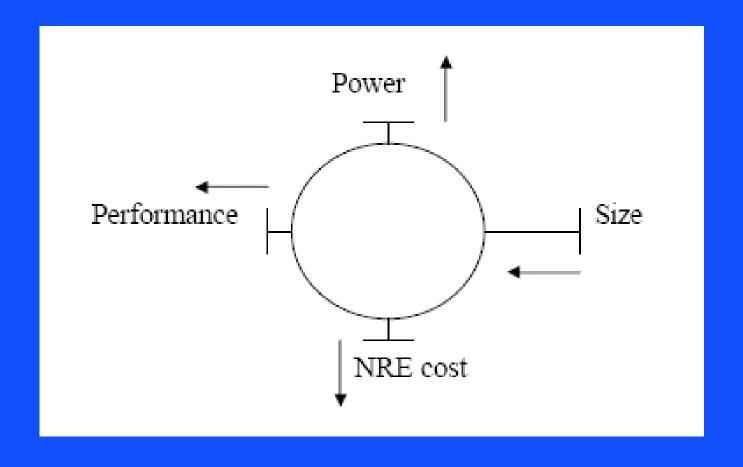
Washers and dryers



ES Example - Digital Camera

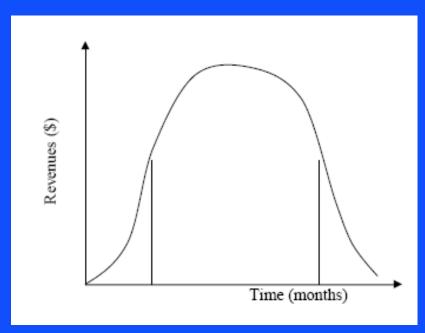
Embedded System Design

- Design goal:
 - Construct an implementation with desired functionality
- Key design challenge:
 - Simultaneously optimize numerous design metrics
- Design metric:
 - A measurable feature of a system's implementation
 - Optimizing design metrics is a key challenge


Common Design Metrics

- Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE cost
- NRE cost (Non-Recurring Engineering cost): The one-time monetary cost of designing the system
- Size: the physical space required by the system
- Performance: the execution time or throughput of the system
- Power: the amount of power consumed by the system
- Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost

Common Design Metrics


- Time-to-prototype: the time needed to build a working version of the system
- Time-to-market: the time required to develop a system to the point that it can be released and sold to customers
- Maintainability: the ability to modify the system after its initial release
- Correctness, safety and many more

Key Design Metrics

Time to Market

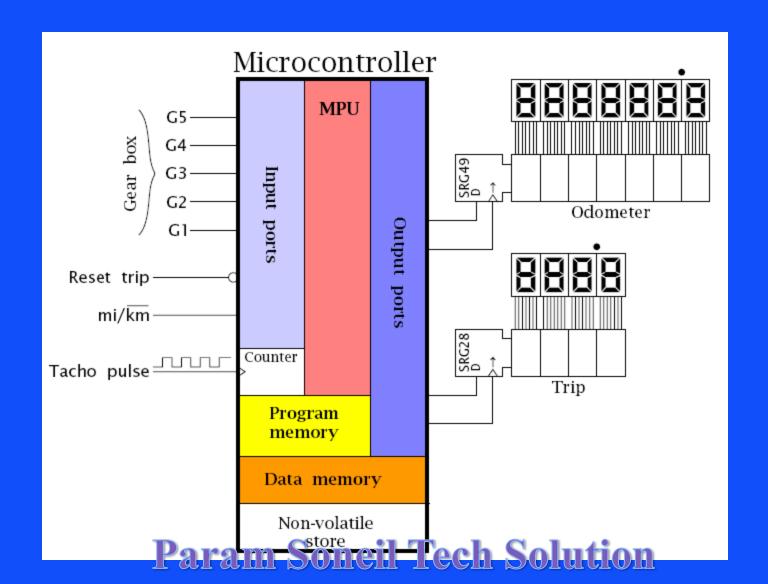
- Time required to develop a product to the point it can be sold to customers
- Market window Period during which the product would have highest sales
- Delays can be costly

NRE and Unit Cost Metrics

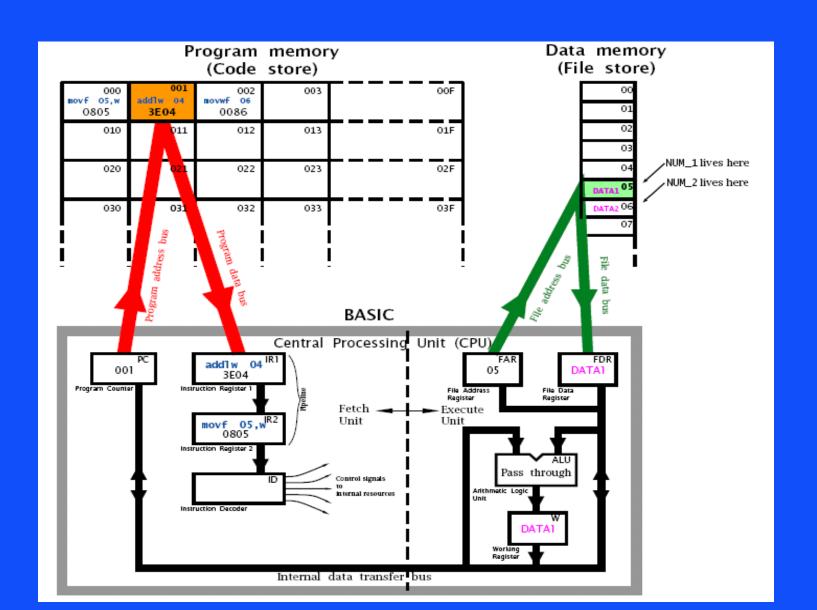
- Costs:
 - NRE cost (Non-Recurring Engineering cost): The one-time monetary
 - Cost of designing the system
 - Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE cost
- Total cost = NRE cost + unit cost * # of units
- Per-product cost = Total cost / # of units
 - = (NRE cost / # of units) + unit cost

Exercise

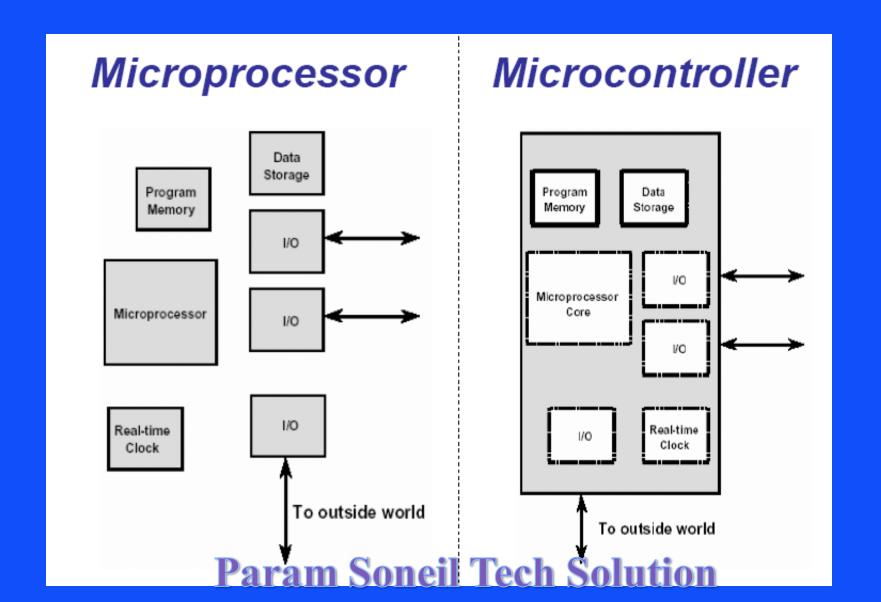
- NRE=\$2000, unit=\$100
- 10 units were sold


Exercise

- NRE=\$2000, unit=\$100
- For 10 units:
 - Total cost = \$2000 + 10 \$\$100 = \$3000
 - Per-product cost = \$2000/10 + \$100 = \$300
- Amortizing NRE cost over the units results in an additional \$200 per unit

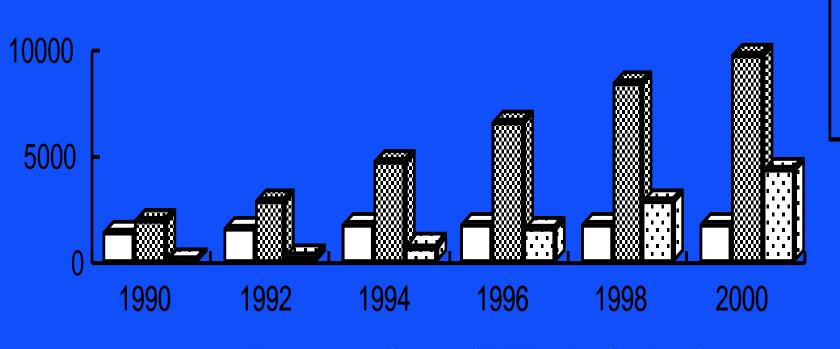

What is a Microcontroller?

- Microcontroller contains a microprocessor with additional peripheral devices integrated into a single package
- Peripheral devices may include:
 - Serial ports (COM), Parallel (Ports), Ethernet ports,
 A/D & D/A
 - Interval timers, watchdog timers, event counter/timers, real time clock
 - Other local processors (DSP, numeric coprocessor, peripheral controller)


Microcontroller Example

Param Soneil Tech Solution Instruction Execution

Microprocessor vs. Microcontroller



Microcontroller Market

- Shipments- > 16 Billion in 2000, 8 bit > 1/2 market
- Major Players:
 - Microchip 16Fxx
 - Intel 8051
 - Motorola MC68HCxx
 - National COP800
 - SGS/Thomson ST62
 - Zilog Z86Cxx

Shipments

Worldwide Microcontroller Shipments in Millions of Dollars

- ☐ 4-bit
- **8**-bit
- □ 16-bit

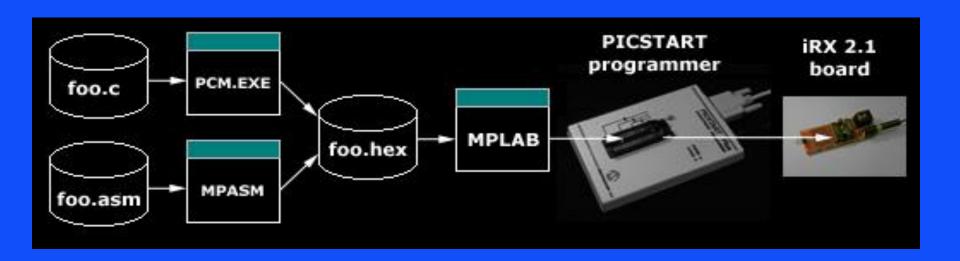
Programming Languages

- ASM
 - Low level
 - Full Control
- BASIC, Forth, LOGO
 - Interpreted
 - Easy to use
 - Slow

- C
 - Most widely used
 - HiTech C
 - Microchip C
 - CCS PIC C

What you need

MPLAB IDE


- Programmer's text editor
- MPLAB SIM, high speed software simulator for PICmicro and dsPIC MCUs with peripheral simulation, complex stimulus injection and register logging
- Full featured debugger
- Graphical project manager
- Visual Device Initializer (VDI) to set up complex peripherals with a graphical point-and-click method
- Version control support for MS Source Safe, CVS, PVCS, Subversion
- **MPASM**TM macro assembler with MPLINKTM linker and MPLIBTM librarian
- MPLAB ASM30 Assembler, MPLAB LINK30 and Utilities for PIC24 and dsPIC devices
- PROCMD command line programmer for MPLAB PM3 and PRO MATE® II
- Visual PROCMD for simplified GUI control of MPLAB PM3 and PRO MATE®
- CCS PCB C Compiler
- Many Powerful Plug-ins: AN851 Bootloader programmer, AN901 BLDC Motor Control Interface, AN908 ACIM Tuning Interface, KeeLoq, Data Monitor and Control, CMX Scheduler and RTOS viewer

What is the Process?

- 1. Write you program in MPLAB IDE
 - C or ASM
- 2. Compile your program
 - CCS C Compiler
- 3. Transfer your program
 - Puts HEX file into the PIC
 - Use PICSTART and MPLAB
 - "Burns your app into the PIC"
- 4. Insert your PIC
- 5. Power it Up

What is the Process?

- 6. Debug your program
 - Never works a the first time
- 7. Repeat step 1

